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Graph blowups, blowup-polynomials
Real-stability; complete multi-partite graphs Recovering G and its distance spectrum

Distance matrices of graphs
By a graph, we will denote G = (V,E) with V = {1, . . . , k} the nodes, and
E ⊂

(
V
2

)
the edges. (Finite, simple, unweighted, and connected.)

Between any two nodes v, w of G, there is a shortest path of integer
length d(v, w) > 0 (i.e., d(v, w) edges).

The distance matrix DG is a V × V matrix with entries d(v, w).

Extensively studied quantity: the determinant of DG for G a tree.
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Algebraic fact: The Graham–Pollak result

Examples of distance matrices (on 4 nodes):
T1, T2 are the star graph K1,3 and the path graph P4, respectively.

2 1 3

4

1 2 3 4

DT1 =


0 1 1 1
1 0 2 2
1 2 0 2
1 2 2 0

 DT2 =


0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0



It turns out that both matrices have the same determinant.
Remarkably, this holds for all trees:

Theorem (Graham–Pollak, Bell Sys. Tech. J., 1971)

Given a tree T on k nodes, detDT = (−1)k−12k−2(k − 1).
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Analysis fact: co-spectral matrices
Also studied by Graham, with Lovász in [Adv. in Math. 1978].

Question: Does the characteristic polynomial of DG detect G?

Answer: No – there exist graphs with the same number of vertices, and the
same characteristic polynomial for DG, which are not isomorphic. E.g.:

Thus, det(DG − x IdV ) does not detect the graph (up to isomorphism).

Inter-related Motivations/Goals:
1 Find a(nother) family {Gi : i ∈ I} of graphs (e.g., trees on k vertices)

such that i 7→ detDGi is a “nice” function.
2 Find an invariant of the matrix DG which detects G

(and is related to the distance spectrum – eigenvalues of DG).
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Graph blowups

The key construction is of a graph blowup G[n], where n = (nv)v∈V is a
V -tuple of positive integers. This is a finite simple connected graph G[n], with:

nv copies of the vertex v ∈ V, and

a copy of vertex v and one of w are adjacent in G[n] if and only if v 6= w
and v, w are adjacent in G.

Example: Path graph P3
∼= P2[(2, 1)]. a — b — c

Blowup of an edge P2 = K2, with a, c = copies of one node.

More examples:

Star graph: K1,n
∼= K2[(1, n)]

4-cycle: C4
∼= K2[(2, 2)].
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Distance matrix of graph blowup, and its determinant

Suggestive example: Compute detDG[n] in all examples above:

detDK2[(r,s)] = (−2)r+s−2(3rs− 4r − 4s + 4).

Contains: (i) an exponential factor in r + s, and
(ii) a polynomial in the sizes r, s.

Question: What is the determinant of DG[n] for general graphs G?

Theorem (C.–Khare, 2021)

There exists a real polynomial pG(n) in the sizes nv, such that:

detDG[n] = (−2)
∑

v(nv−1)pG(n), n ∈ ZV
>0.

Moreover, pG is multi-affine in n, with constant term (−2)|V | and linear term
−(−2)|V |

∑
v∈V nv. (In fact, have closed-form expression for every monomial.)

Definition: Define pG(·) to be the blowup-polynomial of G.
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Proof: Zariski density

Define the modified distance matrix MG := DG + 2 IdV , and
∆n := diag(nv)v∈V . The above proof reveals:

(−2)−
∑

v(nv−1) · detDG[n] = pG(n) = det(∆nMG − 2 IdV ).

However, the inverse M−1
G does get used in our proofs.

So how to assume “in general” that MG = (mvw)v,w∈V is invertible over R?

Answer: Zariski density. Namely, proceed in four steps:
1 Work over the field R0 := Q({mvw}). Now detMG is a nonzero polynomial,

hence in R×0  our proof works.

2 Observe that both sides above are polynomials in the variables,
– so their equality in R0 holds in the polynomial ring Q[{mvw}],
– hence the equality holds in the polynomial function subring Z[{mvw}],
– but on the nonzero locus of P := detMG.

3 Since P is a nonzero polynomial, its nonzero locus is Zariski dense – so the
above equality holds over all values of mvw.

4 Finally, specialize from Z[{mvw}] to values in arbitrary commutative R

– e.g., in R.

Projesh Nath Choudhury, IISc Bangalore 7 / 23
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Blowup-polynomials: further properties

1 pG(n) = det(∆nMG − 2 IdV ) is a polynomial in the entries of MG and in
the sizes nv. Thus: in the above proof, we also let nv be indeterminates,
and work over R̃0 := Q({mvw, nv}) (and apply Zariski density).

2 Thus, we will use nv as both sizes as well as variables.

3 pG(n) is a multi-affine polynomial in the sizes nv.
E.g., pK2(r, s) = 3rs− 4r − 4s + 4.

4 The coefficient of every monomial
∏

i∈I ni can be computed (with
I ⊂ V ). It equals:

(−2)|V \I| det(MG)I×I ,

where (MG)I×I is the principal submatrix of MG = DG + 2 IdV ,

formed by the rows and columns indexed by I.

This achieves Goal 1: the function n 7→ detDG[n] is a “nice” function of n, for
all graphs G. What about Goal 2 – can pG recover G?
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Univariate specialization of pG

Definition: The univariate blowup-polynomial is uG(n) := pG(n, n, . . . , n).

This is closely related to the characteristic polynomial of DG:

Proposition (C.–Khare, 2021)

A real number n is a root of uG if and only if n 6= 0 and 2n−1 − 2 is an
eigenvalue of DG (with the same multiplicity).

In particular, uG also does not recover G:

What about pG – does it recover G?
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pG is a graph invariant

Note: If G has an automorphism sending a vertex v ∈ V to w, then the
blowup-polynomial is “symmetric” under nv ←→ nw.

Thus, the self-isometries/automorphisms of G determine the symmetries
of pG. Does this process work in reverse?

More strongly, does pG recover G?

Theorem (C.–Khare, 2021)

The symmetries of pG coincide with the self-isometries of G. More strongly,
the “purely quadratic” part of pG, i.e. its “Hessian” H(pG), recovers G.

Proof: For all graphs G,

H(pG) := ((∂nv∂nwpG)(0))v,w∈V = (−2)|V |1V×V −(−2)|V |−2(DG+2 IdV )◦2,

where given a matrix M = (mvw), M◦2 := (m2
vw) is its entrywise square.

(Answers Goal 2.)
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Graph blowups, blowup-polynomials
Real-stability; complete multi-partite graphs The blowup delta-matroids

Real-rootedness of uG

The polynomial uK2(n) = 3n2 − 8n + 4 = (n− 2)(3n− 2), so it is
real-rooted.

One can compute: uKk (n) = (n− 2)k−1(kn + n− 2) – also real rooted.

Question: Is uG(n) real-rooted for all graphs G?

Answer: Yes. In fact, much more is true – and for pG itself:

Theorem (C.–Khare, 2021)

For all graphs G, the polynomial pG(n) is real-stable.

Recall: p(z) is real-stable if p(z1, . . . , zk) 6= 0 whenever =(zj) > 0 ∀j.
(Henceforth, |V | = k.)

Projesh Nath Choudhury, IISc Bangalore 11 / 23
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Real-stability – recent applications

Borcea and Brändén [Duke 2008, Ann. of Math. 2009, Invent. Math. 2009. . . ]

Provided far-reaching generalizations of the Laguerre–Pólya–Schur
program on entire functions / multipliers / root-location / . . .

Developed a multi-variable Szász principle and multi-dimensional Jensen
multipliers.

Developed a framework incorporating Lee–Yang and Heilman–Lieb type
theorems.

Proved longstanding conjectures of Johnson. . .

Taken forward by Marcus–Spielman–Srivastava:

Proved the Kadison–Singer conjecture. [Ann. of Math. 2015]

Existence of bipartite Ramanujan graphs of all degrees and orders –
proved conjectures of Bilu–Linial and Lubotzky. [Ann. of Math. 2015]
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Real-stability of pG

Theorem (C.–Khare, 2021)

For all graphs G, the polynomial z 7→ pG(z) is real-stable.

Provides novel families of examples of real-stable examples, from graphs and
distance matrices.

The proof uses two ingredients:

1 A result of Brändén [Adv. in Math. 2007]: if A1, . . . , Ak are positive
semidefinite matrices, and B is real symmetric, then the map

z = (z1, . . . , zk) 7→ det

(
B +

k∑
j=1

zjAj

)

is real-stable.

2 “Inversion” preserves real-stability: If g(z1, . . . , zk) is a polynomial with
zj-degree dj ≥ 1 that is real-stable, then so is zd11 g(−z−1

1 , z2, . . . , zk).
(This is because the map z 7→ −1/z preserves the upper half-plane.)
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Beyond real-stability: Lorenztian / strongly Rayleigh

Recall from above (with |V | = k) that pG(z) has constant term (−2)k and
linear term −(−2)k

∑k
j=1 zj .

Thus, the real-stable polynomial pG does not satisfy two further properties:

1 The coefficients are not all of the same sign. [Can consider pG(−z).]

2 pG is not homogeneous. [Can consider zk0pG(z−1
0 z).]

Stable polynomials with these properties were studied (in broader settings) by:

1 Borcea–Brändén–Liggett [J. Amer. Math. Soc. 2009] – strongly Rayleigh
distributions/polynomials;

2 Brändén–Huh [Ann. of Math. 2020] – Lorentzian polynomials.

Question: If we homogenize pG at −1, for which graphs G does this yield a
real-stable / Lorentzian polynomial? Or, when are all coefficients of the same
sign?

Our next result characterizes the graphs for which this holds.
Remarkably – if and only if all coefficients have same sign (strongly Rayleigh)!
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Strongly Rayleigh graphs are complete multi-partite

Theorem (C.–Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

p̃G(z0, z1, . . . , zk) := (−z0)kpG

(
z1
−z0

, . . . ,
zk
−z0

)
∈ R[z0, z1, . . . , zk].

The following are equivalent:

1 The homogenized polynomial p̃G(z0, z1, . . . , zk) is real-stable.

2 p̃G(·) has all coefficients non-negative (i.e., of the monomials
z
k−|J|
0

∏
j∈J zj).

3 (−1)kpG(−1, . . . ,−1) > 0, and the normalized “reflected” polynomial

qG : (z1, . . . , zk) 7→ pG(−z1, . . . ,−zk)

pG(−1, . . . ,−1)

is strongly Rayleigh, i.e., qG is real-stable, has non-negative coefficients
(of all monomials

∏
j∈J zj), and these sum up to 1.

4 The graph G is a blowup of a complete graph – that is, G is a complete
multipartite graph.
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Lorentzian graphs are also complete multi-partite!

This provides a novel characterization of complete multi-partite graphs, in
terms of real-stability – of the homogenized polynomial

p̃G(z0, z1, . . . , zk) := (−z0)kpG

(
z1
−z0

, . . . ,
zk
−z0

)
∈ R[z0, z1, . . . , zk].

Further equivalent conditions:

Theorem (C.–Khare, 2021)

A graph G is complete multi-partite if and only if any of the following holds:

5 The matrix MG = DG + 2 Idk is positive semidefinite.

6 The polynomial p̃G(z0, z1, . . . , zk) is Lorentzian. (Brändén–Huh, 2020)

7 The polynomial p̃G(z0, z1, . . . , zk) is strongly log-concave. (Gurvits, 2009)

8 The polynomial p̃G(z0, z1, . . . , zk) is completely log-concave.
(Anari–Oveis Gharan–Vinzant, 2018)
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Blowup-polynomials of metric spaces

The graph blowup and blowup-polynomial (defined above for finite
connected graphs) – can be defined in greater generality: for all finite
metric spaces.

All of our theorems above for finite connected graphs, in fact hold for all
finite metric spaces – except for the theorem on recovering G from pG, or
its isometries from the symmetries of pG.

A partial extension in this direction:
The blowup-polynomial is symmetric in all nv, if and only if G is
complete.
This fact generalizes to:

Proposition (C.–Khare, 2021)

For a finite metric space X, with distance matrix DX , the blowup-polynomial
pX(n) is symmetric in the variables {nx : x ∈ X}, if and only if (X, d) is
discrete up to scaling. That is, there exists c > 0 such that d(x, y) = c if
x 6= y ∈ X, and 0 otherwise.
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Matroids

A matroid is a notion common to linear algebra and graph theory (among
other areas):

1 A finite set E (called the ground set);

2 A nonempty family of subsets F ⊂ 2E called the independent sets –
closed under taking subsets + under “exchange axiom”.

Examples:

1 Free matroid: All subsets of E.

2 Uniform matroid: All subsets of E of size ≤ k (for fixed k).

3 E = finite subset of vector space; F = linearly independent subsets of E.
(E.g., Linear matroid : E indexes the columns of a matrix A over a field.)

4 Graphic matroid FG: Let G = (V,E) be a graph. Now FG includes those
(“independent”) sets F ⊂ E which do not contain a cycle.
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Delta-matroids

A related well-studied notion is that of a delta-matroid.

Example 1: Restrict to the bases of Col(A), not all linearly independent
subsets. These satisfy the “Symmetric Exchange Axiom”:

A,B ∈ F , x ∈ A∆B =⇒ there exists y ∈ A∆B s.t. A∆{x, y} ∈ F .

In general, a delta-matroid consists of:

1 A finite ground set E;

2 A nonempty family of subsets F ⊂ 2E called the feasible sets – closed
under the Symmetric Exchange Axiom.

Example 2: Linear delta-matroid – given a symmetric or skew-symmetric
matrix An×n over a field, let E := {1, . . . , n}.
A subset F ⊂ E is feasible ⇐⇒ detAF×F 6= 0.
The set of feasible subsets is the linear delta-matroid, denoted byMA.
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From blowup-polynomials to blowup delta-matroids

Brändén (Adv. Math. 2007) showed: if p(z1, . . . , zk) is a real-stable multi-affine
polynomial, then the set of monomials in p forms a delta-matroid with ground
set E = {1, . . . , k}.

Thus, every blowup-polynomial pG(·) is real-stable  (novel) delta-matroid.

In fact, this delta-matroid is linear: MMG .

Example: For G = P3 (path graph), with E = {1, 2, 3},

MMP3
= 2E \ {{1, 3}, {1, 2, 3}}.

More generally, for Pk for small k, with Ek = {1, . . . , k},

MMPk
= 2Ek \ {{i, i + 2}, {i, i + 1, i + 2} : 1 ≤ i ≤ k − 2}.

Questions:
1 Does this hold for all k?

2 Regardless of (1), is the right-hand side a delta-matroid for all k?
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Another delta-matroid for trees

Proposition (C.–Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equalsMPk if and
only if k ≤ 8.

The second part is because detMP9 = 0, so {1, . . . , 9} 6∈ MPk .

In particular, for k ≥ 9, the right-hand side yields a different novel
delta-matroid for Pk. How to generalize this phenomenon?

Note that the induced subgraph in Pk on I := {i, i + 1, i + 2} is a tree which is
a blowup-graph: P3 = K2[(2, 1)], and i, i + 2 are copies of a vertex in K2.
Hence (MP3)I×I has two identical rows and columns, so det(MP3)I×I = 0.

This holds in full generality:

Proposition (C.–Khare, 2021)

Suppose G,H are graphs and n ∈ ZVG
>0 is a tuple, such that the blowup G[n] is

an induced subgraph of H. If some nv ≥ 2, and v1, v2 ∈ G[n] are copies of v,
and {v1, v2} ⊂ I ⊂ V (G[n]), then the coefficient of

∏
i∈I ni in pH(·) is zero.
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Another delta-matroid for trees (cont.)

Thus, if e.g. G is a tree, and two vertices are leaves in any sub-tree of G on
vertices I ⊂ V (G) with the same parent, then det(MG)I×I = 0.
Is the converse true – i.e., does setting all such I as the infeasible subsets yield
a delta-matroid? (Notice, this recovers the “right-hand” delta-matroid for Pk

for all k.)

Answer: Yes:

Theorem (C.–Khare, 2021)

Suppose T is a tree. Define a subset of vertices I to be infeasible if its Steiner
tree T (I) has two leaves, which are in I and have the same parent. Then the
remaining, “feasible” subsets form a delta-matroidM′(T ).

Note thatM′(Pk) )MMPk
for k ≥ 9.

We also show that the construction ofM′(T ) does not extend to
arbitrary graphs.
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