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Distance matrices of graphs

By a graph, we will denote G = (V, E) with V = {1,...,k} the nodes, and
EC (‘2/) the edges. (Finite, simple, unweighted, and connected.)
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By a graph, we will denote G = (V, E) with V = {1,...,k} the nodes, and
EC (‘2/) the edges. (Finite, simple, unweighted, and connected.)

@ Between any two nodes v, w of G, there is a shortest path of integer
length d(v,w) > 0 (i.e., d(v,w) edges).

@ The distance matrix D¢ is a V' x V matrix with entries d(v, w).
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Distance matrices of graphs

By a graph, we will denote G = (V, E) with V = {1,...,k} the nodes, and
EC (‘2/) the edges. (Finite, simple, unweighted, and connected.)

@ Between any two nodes v, w of G, there is a shortest path of integer
length d(v,w) > 0 (i.e., d(v,w) edges).

@ The distance matrix D¢ is a V' x V matrix with entries d(v, w).

@ Extensively studied quantity: the determinant of D¢ for G a tree.
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Algebraic fact: The Graham—Pollak result

Examples of distance matrices (on 4 nodes):
Ti1,T> are the star graph K 3 and the path graph P, respectively.

4

s T S H 2 S "
01 1 1 01 2 3
1 0 2 2 10 1 2
Dri=17 9 o 2 Pra=19 1 0 1
12 2 0 3 2 1 0
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Algebraic fact: The Graham—Pollak result

Examples of distance matrices (on 4 nodes):
Ti1,T> are the star graph K 3 and the path graph P, respectively.

4

s T H H 2 S "
01 1 1 01 2 3
1 0 2 2 10 1 2
Dri=17 9 o 2 Pra=19 1 0 1
12 2 0 3 2 1 0

It turns out that both matrices have the same determinant.
Remarkably, this holds for all trees:

Theorem (Graham—Pollak, Bell Sys. Tech. J., 1971)

Given a tree T on k nodes, det Dy = (—1)*712F=2(k — 1).
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Analysis fact: co-spectral matrices

Also studied by Graham, with Lovasz in [Adv. in Math. 1978].

Question: Does the characteristic polynomial of D¢ detect G7

Projesh Nath Choudhury, 11ISc Bangalore 4 /23



Graph blowups, blowup-polynomials

Recovering G and its distance spectrum

Analysis fact: co-spectral matrices

Also studied by Graham, with Lovasz in [Adv. in Math. 1978].
Question: Does the characteristic polynomial of D¢ detect G7

Answer: No — there exist graphs with the same number of vertices, and the
same characteristic polynomial for D¢, which are not isomorphic. E.g.:

3 7

1 8
Thus, det(D¢e — xIdv) does not detect the graph (up to isomorphism).

Inter-related Motivations/Goals:
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Recovering G and its distance spectrum

Analysis fact: co-spectral matrices

Also studied by Graham, with Lovasz in [Adv. in Math. 1978].
Question: Does the characteristic polynomial of D¢ detect G7

Answer: No — there exist graphs with the same number of vertices, and the
same characteristic polynomial for D¢, which are not isomorphic. E.g.:

3 7

1 8
Thus, det(D¢e — xIdv) does not detect the graph (up to isomorphism).

Inter-related Motivations/Goals:
@ Find a(nother) family {G; : ¢ € I} of graphs (e.g., trees on k vertices)
such that i — det Dg, is a "nice” function.
@ Find an invariant of the matrix Dg which detects G
(and is related to the distance spectrum — eigenvalues of D¢).
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Graph blowups

The key construction is of a graph blowup G[n], where n = (ny)vev is a
V-tuple of positive integers. This is a finite simple connected graph G[n], with:

@ n, copies of the vertex v € V, and

@ a copy of vertex v and one of w are adjacent in G[n] if and only if v # w
and v, w are adjacent in G.

Example: Path graph P; 2 P»[(2,1)]. a—b—c
Blowup of an edge P> = K>, with a, c = copies of one node.
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Graph blowups

The key construction is of a graph blowup G[n], where n = (ny)vev is a
V-tuple of positive integers. This is a finite simple connected graph G[n], with:

@ n, copies of the vertex v € V, and

@ a copy of vertex v and one of w are adjacent in G[n] if and only if v # w
and v, w are adjacent in G.

Example: Path graph P; 2 P»[(2,1)]. a—b—c
Blowup of an edge P> = K>, with a, c = copies of one node.

More examples:

Star graph: K1, = Ks[(1,n)]

4-cycle: Cy = K>[(2,2)].
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Distance matrix of graph blowup, and its determinant

Suggestive example: Compute det Dy in all examples above:

det Diey(re) = (—2) 77 %(3rs — 4r — 4s + 4).
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Distance matrix of graph blowup, and its determinant

Suggestive example: Compute det Dy in all examples above:
det Diey(re) = (—2) 77 %(3rs — 4r — 4s + 4).

Contains: (i) an exponential factor in r + s, and
(i) a polynomial in the sizes r, s.

Question: What is the determinant of Dy, for general graphs G?
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Distance matrix of graph blowup, and its determinant

Suggestive example: Compute det Dy in all examples above:
det Diey(re) = (—2) 77 %(3rs — 4r — 4s + 4).

Contains: (i) an exponential factor in r + s, and
(i) a polynomial in the sizes r, s.

Question: What is the determinant of Dy, for general graphs G?

Theorem (C.—Khare, 2021)

There exists a real polynomial pc(n) in the sizes n.,, such that:
det Do) = (—2)>*" " Vps(n),  nez¥,.

Moreover, pc is multi-affine in n, with constant term (—2)|V| and linear term
—(-2)"! > wev Mw- (In fact, have closed-form expression for every monomial.)

Projesh Nath Choudhury, 11ISc Bangalore 6 /23



Graph blo s, blo -polynomials . . . .
P wup WUP-POTY! ' Recovering G and its distance spectrum

Distance matrix of graph blowup, and its determinant

Suggestive example: Compute det Dy in all examples above:
det Diey(re) = (—2) 77 %(3rs — 4r — 4s + 4).

Contains: (i) an exponential factor in r + s, and
(i) a polynomial in the sizes r, s.

Question: What is the determinant of Dy, for general graphs G?

Theorem (C.—Khare, 2021)

There exists a real polynomial pc(n) in the sizes n.,, such that:
det Do) = (—2)>*" " Vps(n),  nez¥,.

Moreover, pc is multi-affine in n, with constant term (—2)|V| and linear term
—(-2)"! > wev Mw- (In fact, have closed-form expression for every monomial.)

Definition: Define pg(-) to be the blowup-polynomial of G.
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Proof: Zariski density

Define the modified distance matrix Mg := D¢ + 21dy, and
Ay = diag(ny)vev. The above proof reveals:

(=2)7 22"V det Dy = pa(n) = det(An Mg — 21dy).
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Ay = diag(ny)vev. The above proof reveals:

(=2)7 22"V det Dy = pa(n) = det(An Mg — 21dy).

However, the inverse Mal does get used in our proofs.
So how to assume “in general” that Mg = (Myw)v,wev is invertible over R?
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Proof: Zariski density

Define the modified distance matrix Mg := D¢ + 21dy, and
Ay = diag(ny)vev. The above proof reveals:

(=2)7 22"V det Dy = pa(n) = det(An Mg — 21dy).
However, the inverse Mal does get used in our proofs.
So how to assume “in general” that Mg = (Myw)v,wev is invertible over R?

Answer: Zariski density. Namely, proceed in four steps:

@ Work over the field Ry := Q({myw}). Now det M is a nonzero polynomial,
hence in Ry ~ our proof works.
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Proof: Zariski density

Define the modified distance matrix Mg := D¢ + 21dy, and
Ay = diag(ny)vev. The above proof reveals:

(=2)7 22"V det Dy = pa(n) = det(An Mg — 21dy).

However, the inverse Mal does get used in our proofs.
So how to assume “in general” that Mg = (Myw)v,wev is invertible over R?

Answer: Zariski density. Namely, proceed in four steps:

@ Work over the field Ry := Q({myw}). Now det M is a nonzero polynomial,
hence in Ry ~ our proof works.
@ Observe that both sides above are polynomials in the variables,
— so their equality in Rg holds in the polynomial ring Q[{myw}|,
— hence the equality holds in the polynomial function subring Z[{muyw}],
— but on the nonzero locus of P := det M¢.
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Proof: Zariski density

Define the modified distance matrix Mg := D¢ + 21dy, and
Ay = diag(ny)vev. The above proof reveals:

(=2)7 22"V det Dy = pa(n) = det(An Mg — 21dy).

However, the inverse Mal does get used in our proofs.
So how to assume “in general” that Mg = (Myw)v,wev is invertible over R?
Answer: Zariski density. Namely, proceed in four steps:

@ Work over the field Ry := Q({myw}). Now det M is a nonzero polynomial,
hence in Ry ~ our proof works.
@ Observe that both sides above are polynomials in the variables,
— so their equality in Rg holds in the polynomial ring Q[{myw}|,
— hence the equality holds in the polynomial function subring Z[{muyw}],
— but on the nonzero locus of P := det M¢.

© Since P is a nonzero polynomial, its nonzero locus is Zariski dense — so the
above equality holds over all values of M.
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Proof: Zariski density

Define the modified distance matrix Mg := D¢ + 21dy, and
Ay = diag(ny)vev. The above proof reveals:

(=2)7 22"V det Dy = pa(n) = det(An Mg — 21dy).

However, the inverse Mal does get used in our proofs.
So how to assume “in general” that Mg = (Myw)v,wev is invertible over R?

Answer: Zariski density. Namely, proceed in four steps:

@ Work over the field Ry := Q({myw}). Now det M is a nonzero polynomial,
hence in Ry ~ our proof works.

@ Observe that both sides above are polynomials in the variables,
— so their equality in Rg holds in the polynomial ring Q[{myw}|,
— hence the equality holds in the polynomial function subring Z[{muyw}],
— but on the nonzero locus of P := det M¢.

© Since P is a nonzero polynomial, its nonzero locus is Zariski dense — so the
above equality holds over all values of M.

@ Finally, specialize from Z[{muy }] to values in arbitrary commutative R
—eg.,in R
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Blowup-polynomials: further properties

Q pc(n) = det(AnMg —21dv) is a polynomial in the entries of M¢ and in
the sizes n,. Thus: in the above proof, we also let n., be indeterminates,
and work over Ro := Q({muvw,nv}) (and apply Zariski density).

@ Thus, we will use n, as both sizes as well as variables.
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Blowup-polynomials: further properties

Q pc(n) = det(AnMg —21dv) is a polynomial in the entries of M¢ and in
the sizes n,. Thus: in the above proof, we also let n., be indeterminates,
and work over Ro := Q({muvw,nv}) (and apply Zariski density).

@ Thus, we will use n, as both sizes as well as variables.

© pc(n) is a multi-affine polynomial in the sizes n,,.
E.g., pr,(r,s) =3rs —4r —4s + 4.

@ The coefficient of every monomial J],.; n: can be computed (with
I CV). It equals:

(—=2)" M det(Ma) 11,

where (M¢)rxr is the principal submatrix of Mg = Dg + 21dv,
formed by the rows and columns indexed by I.
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Blowup-polynomials: further properties

Q pc(n) = det(AnMg —21dv) is a polynomial in the entries of M¢ and in
the sizes n,. Thus: in the above proof, we also let n., be indeterminates,
and work over Ro := Q({muvw,nv}) (and apply Zariski density).

@ Thus, we will use n, as both sizes as well as variables.

© pc(n) is a multi-affine polynomial in the sizes n,,.
E.g., pr,(r,s) =3rs —4r —4s + 4.

@ The coefficient of every monomial J],.; n: can be computed (with
I CV). It equals:

(—=2)" M det(Ma) 11,

where (M¢)rxr is the principal submatrix of Mg = Dg + 21dv,
formed by the rows and columns indexed by I.

This achieves Goal 1: the function n — det D¢y is a “nice” function of n, for
all graphs G.
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Blowup-polynomials: further properties

Q pc(n) = det(AnMg —21dv) is a polynomial in the entries of M¢ and in
the sizes n,. Thus: in the above proof, we also let n., be indeterminates,
and work over Ro := Q({muvw,nv}) (and apply Zariski density).

@ Thus, we will use n, as both sizes as well as variables.

© pc(n) is a multi-affine polynomial in the sizes n,,.
E.g., pr,(r,s) =3rs —4r —4s + 4.

© The coefficient of every monomial []
I CV). It equals:

sc1 i can be computed (with

(—=2)" M det(Ma) 11,
where (M¢)rxr is the principal submatrix of Mg = Dg + 21dv,
formed by the rows and columns indexed by I.

This achieves Goal 1: the function n — det D¢y is a “nice” function of n, for
all graphs G. What about Goal 2 — can pg recover G7
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Univariate specialization of pg

Definition: The univariate blowup-polynomial is uc(n) := pa(n,n,...,n).

This is closely related to the characteristic polynomial of Dg:
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Definition: The univariate blowup-polynomial is uc(n) := pa(n,n,...,n).
This is closely related to the characteristic polynomial of Dg:

Proposition (C.—Khare, 2021)

-1

A real number n is a root of uc if and only if n # 0 and 2n™" — 2 is an

eigenvalue of D¢ (with the same multiplicity).
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Graph blowups, blowup-polynomials

Recovering G and its distance spectrum

Univariate specialization of pg

Definition: The univariate blowup-polynomial is uc(n) := pa(n,n,...,n).

This is closely related to the characteristic polynomial of Dg:

Proposition (C.—Khare, 2021)

1

A real number n is a root of uc if and only if n # 0 and 2n™" — 2 is an

eigenvalue of D¢ (with the same multiplicity).

In particular, ugc also does not recover G:

What about pg — does it recover G7
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pc is a graph invariant

Note: If G has an automorphism sending a vertex v € V to w, then the
blowup-polynomial is “symmetric” under n, +— n.,.

@ Thus, the self-isometries/automorphisms of G determine the symmetries
of pg. Does this process work in reverse?
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Note: If G has an automorphism sending a vertex v € V to w, then the
blowup-polynomial is “symmetric” under n, +— n.,.

@ Thus, the self-isometries/automorphisms of G determine the symmetries
of pg. Does this process work in reverse?

@ More strongly, does pa recover G7?7

Theorem (C.—Khare, 2021)

The symmetries of pc coincide with the self-isometries of G. More strongly,
the “purely quadratic” part of pa, i.e. its “Hessian” H(pc), recovers G.
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pc is a graph invariant

Note: If G has an automorphism sending a vertex v € V to w, then the
blowup-polynomial is “symmetric” under n, +— n.,.

@ Thus, the self-isometries/automorphisms of G determine the symmetries
of pg. Does this process work in reverse?

@ More strongly, does pa recover G7?7

Theorem (C.—Khare, 2021)

The symmetries of pc coincide with the self-isometries of G. More strongly,
the “purely quadratic” part of pa, i.e. its “Hessian” H(pc), recovers G.

Proof: For all graphs G,
H(pe) = ((0n,0n,06) (0))vwev = (=2) 11y —(=2)V1 72 (Dg +21dv) 2,

where given a matrix M = (myw), M°? := (m2,) is its entrywise square. [

(Answers Goal 2.)
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o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Real-rootedness of ug

@ The polynomial ur,(n) = 3n*> —8n +4 = (n —2)(3n — 2), so it is
real-rooted.

@ One can compute: ur, (n) = (n — 2)* ! (kn +n — 2) — also real rooted.

Question: Is ug(n) real-rooted for all graphs G7
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@ The polynomial ur,(n) = 3n*> —8n +4 = (n —2)(3n — 2), so it is
real-rooted.

@ One can compute: ur, (n) = (n — 2)* ! (kn +n — 2) — also real rooted.

Question: Is uc(n) real-rooted for all graphs G?

Answer: Yes. In fact, much more is true — and for p¢ itself:

Theorem (C.—Khare, 2021)

For all graphs G, the polynomial pc(n) is real-stable.
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o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Real-rootedness of ug

@ The polynomial ur,(n) = 3n*> —8n +4 = (n —2)(3n — 2), so it is
real-rooted.

@ One can compute: ur, (n) = (n — 2)* ! (kn +n — 2) — also real rooted.

Question: Is ug(n) real-rooted for all graphs G7

Answer: Yes. In fact, much more is true — and for p¢ itself:

Theorem (C.—Khare, 2021)

For all graphs G, the polynomial pc(n) is real-stable.

Recall: p(z) is real-stable if p(z1,...,2xr) # 0 whenever S(z;) > 0 Vj.
(Henceforth, |V | = k.)
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o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Real-stability — recent applications

Borcea and Briandén [Duke 2008, Ann. of Math. 2009, Invent. Math. 2009. . .]

@ Provided far-reaching generalizations of the Laguerre—Pélya—Schur
program on entire functions / multipliers / root-location / ...

@ Developed a multi-variable Szasz principle and multi-dimensional Jensen
multipliers.

@ Developed a framework incorporating Lee—Yang and Heilman—Lieb type
theorems.

@ Proved longstanding conjectures of Johnson. ..

Projesh Nath Choudhury, 11ISc Bangalore 12 / 23



o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Real-stability — recent applications

Borcea and Briandén [Duke 2008, Ann. of Math. 2009, Invent. Math. 2009. . .]

@ Provided far-reaching generalizations of the Laguerre—Pélya—Schur
program on entire functions / multipliers / root-location / ...

@ Developed a multi-variable Szasz principle and multi-dimensional Jensen
multipliers.

@ Developed a framework incorporating Lee—Yang and Heilman—Lieb type
theorems.

@ Proved longstanding conjectures of Johnson. ..

Taken forward by Marcus—Spielman—Srivastava:
@ Proved the Kadison-Singer conjecture. [Ann. of Math. 2015]

@ Existence of bipartite Ramanujan graphs of all degrees and orders —
proved conjectures of Bilu-Linial and Lubotzky. [Ann. of Math. 2015]
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o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Real-stability of pg

Theorem (C.—Khare, 2021)

For all graphs G, the polynomial z — pg(z) is real-stable.

Provides novel families of examples of real-stable examples, from graphs and
distance matrices.
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The blowup delta-matroids

Real-stability; complete multi-partite graphs

Real-stability of pg

Theorem (C.—Khare, 2021)
For all graphs G, the polynomial z — pg(z) is real-stable.

Provides novel families of examples of real-stable examples, from graphs and
distance matrices.

The proof uses two ingredients:

@ A result of Brindén [Adv. in Math. 2007]: if A4,..., Ay are positive
semidefinite matrices, and B is real symmetric, then the map

k
z = (z1,...,2;) — det <B+ZZjAj>

Jj=1

is real-stable.
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The blowup delta-matroids

Real-stability; complete multi-partite graphs

Real-stability of pg

Theorem (C.—Khare, 2021)
For all graphs G, the polynomial z — pg(z) is real-stable.

Provides novel families of examples of real-stable examples, from graphs and
distance matrices.

The proof uses two ingredients:

@ A result of Brindén [Adv. in Math. 2007]: if A4,..., Ay are positive
semidefinite matrices, and B is real symmetric, then the map

k
z = (z1,...,2;) — det <B+ZZjAj>

j=1

is real-stable.
@ ‘Inversion” preserves real-stability: If g(z1,...,zx) is a polynomial with
z;-degree d; > 1 that is real-stable, then so is z{* g(—z7", 22, ..., z1).

(This is because the map z +— —1/z preserves the upper half-plane.)
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o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Beyond real-stability: Lorenztian / strongly Rayleigh

Recall from above (with |V| = k) that pg(z) has constant term (—2)* and
linear term —(—2)" Z§:1 zj.

Thus, the real-stable polynomial pg does not satisfy two further properties:
© The coefficients are not all of the same sign. [Can consider pa(—2).]

@ pc is not homogeneous. [Can consider z(’)“pc(zgl ).]
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© The coefficients are not all of the same sign. [Can consider pa(—2).]

@ pc is not homogeneous. [Can consider z(’)“pc(zgl ).]

Stable polynomials with these properties were studied (in broader settings) by:

© Borcea—Brandén-Liggett [J. Amer. Math. Soc. 2009] — strongly Rayleigh
distributions/polynomials;

@ Brindén—Huh [Ann. of Math. 2020] — Lorentzian polynomials.

Projesh Nath Choudhury, 11ISc Bangalore 14 / 23



o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Beyond real-stability: Lorenztian / strongly Rayleigh

Recall from above (with |V| = k) that pg(z) has constant term (—2)* and
linear term —(—2)" Z§:1 zj.

Thus, the real-stable polynomial pg does not satisfy two further properties:
© The coefficients are not all of the same sign. [Can consider pa(—2).]

@ pc is not homogeneous. [Can consider z(’)“pc(zgl ).]

Stable polynomials with these properties were studied (in broader settings) by:

© Borcea—Brandén-Liggett [J. Amer. Math. Soc. 2009] — strongly Rayleigh
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Beyond real-stability: Lorenztian / strongly Rayleigh

Recall from above (with |V| = k) that pg(z) has constant term (—2)* and
linear term —(—2)" Z§:1 zj.

Thus, the real-stable polynomial pg does not satisfy two further properties:
© The coefficients are not all of the same sign. [Can consider pa(—2).]

@ pc is not homogeneous. [Can consider z(’)“pc(zgl ).]

Stable polynomials with these properties were studied (in broader settings) by:

© Borcea—Brandén-Liggett [J. Amer. Math. Soc. 2009] — strongly Rayleigh
distributions/polynomials;

@ Brindén—Huh [Ann. of Math. 2020] — Lorentzian polynomials.
Question: If we homogenize pe at —1, for which graphs G does this yield a

real-stable / Lorentzian polynomial? Or, when are all coefficients of the same
ien?
sign?

Our next result characterizes the graphs for which this holds.
Remarkably — if and only if all coefficients have same sign (strongly Rayleigh)!
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o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Strongly Rayleigh graphs are complete multi-partite

Theorem (C.—Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

~ z z
pc(20, 21, -« -y 2k) i= (—zo)kpc (—1 ,...,—k > € Rlzo, 21, - - - , 2k].
—20 —Z0

The following are equivalent:
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Theorem (C.—Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

~ z z
pa(z0, 21, - - -5 21) == (—20)"pe (—1, e —k> € Rlzo, 21, - - - , 2k].
—20 —Z0
The following are equivalent:
© The homogenized polynomial pc(20, 1, - - -, 2k) is real-stable.

@ Dpc(+) has all coefficients non-negative (i.e., of the monomials

k—|J
20 l 'Hjeﬂj)-
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Theorem (C.—Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

~ z z
pa(z0, 21, - - -5 21) == (—20)"pe (—1, e —k> € Rlzo, 21, - - - , 2k].
—20 —Z0
The following are equivalent:
© The homogenized polynomial pc(20, 1, - - -, 2k) is real-stable.

@ Dpc(+) has all coefficients non-negative (i.e., of the monomials

k—|J
20 l 'Hjeﬂj)-

Q (—1)*pa(—1,...,—1) > 0, and the normalized “reflected” polynomial
pa(—21, ...y —2k)
5 coo — S e
9o ¢ (21,5 2%) pa(—1,...,—1)

is strongly Rayleigh, i.e., qc is real-stable, has non-negative coefficients
(of all monomials [ ] ; z;), and these sum up to 1.
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o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Strongly Rayleigh graphs are complete multi-partite

Theorem (C.—Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

~ z z
pa(z0, 21, - - -5 21) == (—20)"pe ( Lo = > € Rlzo, 21, - - - , 2k].
—20 —Z0
The following are equivalent:
© The homogenized polynomial pc(20, 1, - - -, 2k) is real-stable.

@ Dpc(+) has all coefficients non-negative (i.e., of the monomials
k—|J]|
20 I1 jeJ ?i )-

Q (—1)*pa(—1,...,—1) > 0, and the normalized “reflected” polynomial
pa(—21, ...y —2k)
5 coo — S e
9o ¢ (21,5 2%) pa(—1,...,—1)

is strongly Rayleigh, i.e., qc is real-stable, has non-negative coefficients
(of all monomials [ ] ; z;), and these sum up to 1.

@ The graph G is a blowup of a complete graph — that is, G is a complete
multipartite graph.
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o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Lorentzian graphs are also complete multi-partite!

This provides a novel characterization of complete multi-partite graphs, in
terms of real-stability — of the homogenized polynomial

~ . z ¥4
pG(ZO7Z17-"7Zk) = (_ZO)kpG <71777k> GR[ZO7Z17~~~7Z]€}~
—20 —Z0
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o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Lorentzian graphs are also complete multi-partite!

This provides a novel characterization of complete multi-partite graphs, in
terms of real-stability — of the homogenized polynomial

~ . z ¥4
pG(Z07Z17-"7zk) = (_ZO)kpG <71777k> GR[ZO7Z17~~~7Z]€}~
—20 —Z0

Further equivalent conditions:

Theorem (C.—Khare, 2021)
A graph G is complete multi-partite if and only if any of the following holds:

@ The matrix Mg = D¢ + 21dy, is positive semidefinite.
@ The polynomial pc(zo, 21, ..., 2k) is Lorentzian. (Brindén—Huh, 2020)
@ The polynomial pc(zo0, 21, - - - , 2k is strongly log-concave. (Gurvits, 2009)

@ The polynomial pc(zo, 21, - - ., zk) is completely log-concave.
(Anari—Oveis Gharan—Vinzant, 2018)
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o . . The blowup delta-matroids
Real-stability; complete multi-partite graphs

Blowup-polynomials of metric spaces

@ The graph blowup and blowup-polynomial (defined above for finite
connected graphs) — can be defined in greater generality: for all finite
metric spaces.
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its isometries from the symmetries of pg.
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Blowup-polynomials of metric spaces

@ The graph blowup and blowup-polynomial (defined above for finite
connected graphs) — can be defined in greater generality: for all finite
metric spaces.

@ All of our theorems above for finite connected graphs, in fact hold for all
finite metric spaces — except for the theorem on recovering G from pg, or
its isometries from the symmetries of pg.

@ A partial extension in this direction:

The blowup-polynomial is symmetric in all n.,, if and only if G is
complete.

This fact generalizes to:

Proposition (C.—Khare, 2021)

For a finite metric space X, with distance matrix Dx, the blowup-polynomial
px (n) is symmetric in the variables {n, : © € X}, if and only if (X, d) is
discrete up to scaling. That is, there exists ¢ > 0 such that d(z,y) = c if

x #y € X, and 0 otherwise.
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L . . The bl Ita- i
Real-stability; complete multi-partite graphs @ s defiiermeies

Matroids

A matroid is a notion common to linear algebra and graph theory (among
other areas):
O A finite set E (called the ground set);

@ A nonempty family of subsets F C 2% called the independent sets —
closed under taking subsets + under “exchange axiom”.
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Matroids

A matroid is a notion common to linear algebra and graph theory (among

other areas):
O A finite set E (called the ground set);

@ A nonempty family of subsets F C 2% called the independent sets —
closed under taking subsets + under “exchange axiom”.

Examples:
@ Free matroid: All subsets of E.
@ Uniform matroid: All subsets of E of size < k (for fixed k).
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O A finite set E (called the ground set);

@ A nonempty family of subsets F C 2% called the independent sets —
closed under taking subsets + under “exchange axiom”.

Examples:
@ Free matroid: All subsets of E.
@ Uniform matroid: All subsets of E of size < k (for fixed k).

© E = finite subset of vector space; F = linearly independent subsets of E.
(E.g., Linear matroid: E indexes the columns of a matrix A over a field.)
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Matroids

A matroid is a notion common to linear algebra and graph theory (among
other areas):

O A finite set E (called the ground set);

@ A nonempty family of subsets F C 2% called the independent sets —
closed under taking subsets + under “exchange axiom”.

Examples:
@ Free matroid: All subsets of E.
@ Uniform matroid: All subsets of E of size < k (for fixed k).

© E = finite subset of vector space; F = linearly independent subsets of E.
(E.g., Linear matroid: E indexes the columns of a matrix A over a field.)

@ Graphic matroid F¢: Let G = (V, E) be a graph. Now F¢ includes those
(“independent”) sets F' C E which do not contain a cycle.
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Delta-matroids

A related well-studied notion is that of a delta-matroid.

Example 1: Restrict to the bases of Col(A), not all linearly independent
subsets. These satisfy the “Symmetric Exchange Axiom':

A BeF, € AAB = thereexistsy € AAB s.t. AA{z,y} € F.
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Delta-matroids

A related well-studied notion is that of a delta-matroid.

Example 1: Restrict to the bases of Col(A), not all linearly independent
subsets. These satisfy the “Symmetric Exchange Axiom':

A BeF, € AAB = thereexistsy € AAB s.t. AA{z,y} € F.

In general, a delta-matroid consists of:
@ A finite ground set E;

@ A nonempty family of subsets 7 C 2% called the feasible sets — closed
under the Symmetric Exchange Axiom.

Example 2: Linear delta-matroid — given a symmetric or skew-symmetric
matrix Anxr. over a field, let F :={1,...,n}.

A subset F' C FE is feasible <= det Apxr # 0.
The set of feasible subsets is the linear delta-matroid, denoted by M 4.
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From blowup-polynomials to blowup delta-matroids

Brandén (Adv. Math. 2007) showed: if p(z1,..., 2x) is a real-stable multi-affine
polynomial, then the set of monomials in p forms a delta-matroid with ground

set E={1,...,k}.

Thus, every blowup-polynomial pg(-) is real-stable ~~ (novel) delta-matroid.

Projesh Nath Choudhury, 11ISc Bangalore 20 / 23



Real-stability; complete multi-partite graphs i s delie-meieis

From blowup-polynomials to blowup delta-matroids

Brandén (Adv. Math. 2007) showed: if p(z1,..., 2x) is a real-stable multi-affine
polynomial, then the set of monomials in p forms a delta-matroid with ground
set E={1,...,k}.

Thus, every blowup-polynomial pg(-) is real-stable ~~ (novel) delta-matroid.

In fact, this delta-matroid is linear: M.

Example: For G = Ps (path graph), with E = {1,2, 3},
MMPs = 2E \ {{17 3}’ {17 2, 3}}

Projesh Nath Choudhury, 11ISc Bangalore 20 / 23



Real-stability; complete multi-partite graphs i s delie-meieis

From blowup-polynomials to blowup delta-matroids

Brandén (Adv. Math. 2007) showed: if p(z1,..., 2x) is a real-stable multi-affine
polynomial, then the set of monomials in p forms a delta-matroid with ground
set E={1,...,k}.

Thus, every blowup-polynomial pg(-) is real-stable ~~ (novel) delta-matroid.

In fact, this delta-matroid is linear: M.

Example: For G = Ps (path graph), with E = {1,2, 3},

Masp, =28\ {{1,3},{1,2,3}}.
More generally, for Py for small k, with E, = {1,...,k},

Mg, = 2B\ {{i,i+ 2}, {i,i4+1,i+2}:1<i<k—2}.
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From blowup-polynomials to blowup delta-matroids

Brandén (Adv. Math. 2007) showed: if p(z1,..., 2x) is a real-stable multi-affine
polynomial, then the set of monomials in p forms a delta-matroid with ground
set E={1,...,k}.

Thus, every blowup-polynomial pg(-) is real-stable ~~ (novel) delta-matroid.

In fact, this delta-matroid is linear: M.

Example: For G = Ps (path graph), with E = {1,2, 3},
Masp, =28\ {{1,3},{1,2,3}}.
More generally, for Py for small k, with E, = {1,...,k},
Marp, =27\ {{i,i+2}, {i,i+1,i4+2}:1<i<k—2}
Questions:

@ Does this hold for all k?
@ Regardless of (1), is the right-hand side a delta-matroid for all k?
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Another delta-matroid for trees

Proposition (C.—Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals Mp, if and
only if k < 8.
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Another delta-matroid for trees

Proposition (C.—Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals Mp, if and
only if k < 8.

The second part is because det Mp, =0, so {1,...,9} € Mp,.

In particular, for k > 9, the right-hand side yields a different novel
delta-matroid for P,. How to generalize this phenomenon?
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Another delta-matroid for trees

Proposition (C.—Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals Mp, if and
only if k < 8.

The second part is because det Mp, =0, so {1,...,9} € Mp,.
In particular, for k > 9, the right-hand side yields a different novel

delta-matroid for P,. How to generalize this phenomenon?

Note that the induced subgraph in Py on I := {i,i+ 1,7+ 2} is a tree which is
a blowup-graph: P; = K>[(2,1)], and 7,i + 2 are copies of a vertex in K.
Hence (Mp,)rx 1 has two identical rows and columns, so det(Mp,)rx1 = 0.
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Another delta-matroid for trees

Proposition (C.—Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals Mp, if and
only if k < 8.

The second part is because det Mp, =0, so {1,...,9} € Mp,.
In particular, for k > 9, the right-hand side yields a different novel

delta-matroid for P,. How to generalize this phenomenon?

Note that the induced subgraph in Py on I := {i,i+ 1,7+ 2} is a tree which is
a blowup-graph: P; = K>[(2,1)], and 7,i + 2 are copies of a vertex in K.
Hence (Mp,)rx 1 has two identical rows and columns, so det(Mp,)rx1 = 0.

This holds in full generality:

Proposition (C.—Khare, 2021)

Suppose G, H are graphs and n € Z‘;GO is a tuple, such that the blowup G[n] is
an induced subgraph of H.
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Another delta-matroid for trees

Proposition (C.—Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals Mp, if and
only if k < 8.

The second part is because det Mp, =0, so {1,...,9} € Mp,.

In particular, for k > 9, the right-hand side yields a different novel
delta-matroid for P,. How to generalize this phenomenon?

Note that the induced subgraph in Py on I := {i,i+ 1,7+ 2} is a tree which is
a blowup-graph: P; = K>[(2,1)], and 7,i + 2 are copies of a vertex in K.
Hence (Mp,)rx 1 has two identical rows and columns, so det(Mp,)rx1 = 0.

This holds in full generality:

Proposition (C.—Khare, 2021)

Suppose G, H are graphs and n € Z‘;GO is a tuple, such that the blowup G[n] is
an induced subgraph of H. If some n, > 2, and v1,v2 € G[n] are copies of v,
and {vi,v2} C I C V(G[n]), then the coefficient of [],.; ni in pr(-) is zero.
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Another delta-matroid for trees (cont.)

Thus, if e.g. G is a tree, and two vertices are leaves in any sub-tree of G on
vertices I C V(G) with the same parent, then det(Mg)rxr = 0.

Is the converse true — i.e., does setting all such I as the infeasible subsets yield
a delta-matroid? (Notice, this recovers the "right-hand” delta-matroid for Py
for all k.)
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Another delta-matroid for trees (cont.)

Thus, if e.g. G is a tree, and two vertices are leaves in any sub-tree of G on
vertices I C V(G) with the same parent, then det(Mg)rxr = 0.

Is the converse true — i.e., does setting all such I as the infeasible subsets yield
a delta-matroid? (Notice, this recovers the "right-hand” delta-matroid for Py
for all k.)

Answer: Yes:

Theorem (C.—Khare, 2021)

Suppose T is a tree. Define a subset of vertices I to be infeasible if its Steiner
tree T'(I) has two leaves, which are in I and have the same parent. Then the
remaining, “feasible” subsets form a delta-matroid M'(T).
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Another delta-matroid for trees (cont.)

Thus, if e.g. G is a tree, and two vertices are leaves in any sub-tree of G on
vertices I C V(G) with the same parent, then det(Mg)rxr = 0.

Is the converse true — i.e., does setting all such I as the infeasible subsets yield
a delta-matroid? (Notice, this recovers the "right-hand” delta-matroid for Py
for all k.)

Answer: Yes:

Theorem (C.—Khare, 2021)

Suppose T is a tree. Define a subset of vertices I to be infeasible if its Steiner
tree T'(I) has two leaves, which are in I and have the same parent. Then the
remaining, “feasible” subsets form a delta-matroid M'(T).

@ Note that M'(Px) 2 Masp, for k > 9.

@ We also show that the construction of M'(T) does not extend to
arbitrary graphs.
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